WHEN FIRST RESPONDERS arrived to the burning home on Eugene Street in Manchester, New Hampshire just after 2 am on January 27, half the home was already up in flames. It was a big fire, but relatively routine: Working in the dark, the firefighters made sure the two residents got out unharmed, and got to work.
Once they reached the roof, though, they ran into trouble. This home was covered in rigid, electrified solar panels—making it difficult for the firefighters to cut holes in the roof to let smoke and heat escape. Finally, they found enough open space around the panels to jockey an adequate hole. “Our guys had to do what they had to do,” says Paul King, Manchester’s deputy fire marshal. The cat inside didn’t make it.
In the last two decades, solar power has exploded. In 2009, only 30,000 American homes had solar panels; by 2013, that number had jumped to 400,000. With that growth, firefighters have had to contend with new threats to their safety—and that of the buildings and people they’re charged with protecting.
Firefighters rarely turn the planning part of their brains off, says Peter Lynch, chief of training at the Vermont Fire Academy. “If you’re driving down the road with a firefighter, more than likely, they’re looking at the next building saying, ‘If we needed to save this building, how would we do it?'” he says. But it’s hard to evaluate a solar-paneled house from the ground. Panels can get in the way of cutting ventilation holes, like they did on Eugene Street. First responders also rely on the ability to turn off the electricity pulsing through a structure—but photovoltaic panels can make their own power. Electrified panels can cause burns, or even blow responders off a roof.
The panels in Manchester were modern models, and had a shut off switch that allowed the firefighters to de-electrify panels. But they got lucky. While the firefighting community has started to recognize and plan for the risks of electrified roofs, they still don’t have all the necessary rules and tools to work around them.